odb toyota 1

17 pin Toyota proprietary connector layout obd

 

Pin
Description (may be empty)
TE1 Engine self-diagnostic codes
E1 Engine self-diagnostic codes. E1 is the common ground for the Ecu’s self diagnosis when atec wants to access trouble codes on OBD1 toyota cars
W Engine self-diagnostic codes. W is aself diagnosis for the warning light circuit inside the vehicle gray cover underhood connecter by using the gamper wire to check weather the warning and the check engine lamp and wiring circuit are okay for proper functioning which meanes aself chek for the complete warning circuit integrity for this obd 1

23 pin Toyota proprietary connector layout

 

 

Pin
Description (may be empty)
FP Fuel pump voltage control
W Self-diagnostic codes (Check engine light)
E1 Ground
Ox Lambda sensor out voltage control
TE Engine self-diagnostic codes
Te1 Engine self-diagnostic codes
Te2 Engine self-diagnostic codes
CC2 Second lambda sensor diagnostic
Tc ABS, traction control, Hight Control and other system diagnostic codes
OP2 Diagnostic K-Line
+B +12V
VF1 Vf-feedback voltage
VF2 Vf-feedback voltage for second lambda sensor
Ox2 Second Lambda sensor out voltage control
Ts ABS speed sensor and traction control diagnostic codes
Tt Automatic transmission diagnostic codes
OP3 Diagnostic L-line
TD air-powered suspension turn off (LS400)
T Engine self-diagnostic codes
OP1 Immobilizer self-diagnostic codes
IG- Ignition Pulse output

 

16 pin J1962 OBD-2 car proprietary connector layout
Pin Signal Description
2 J1850 Bus+
4 CGND Chassis ground
5 SGND Signal ground
6 CAN High J-2284
7 K-LINE (ISO 9141-2 and ISO/DIS 14230-4)
10 J1850 Bus-
13 TC Timing check – ignition advance angle adjustment or ABS slow codes out
14 CAN Low J-2284
15 ISO 9141-2 L-LINE (ISO 9141-2 and ISO/DIS 14230-4)
16 +12v Battery power
copy form pinouts.ru

 

 

bible of obd pin out

 

In the bus, the bushing is for the connection at the Boardcomputer in the Lenksule about 30cm beneath the steering wheel behind a simple plastic lid. Flight the dimensions determines can go off and then it: I decided on a simple solution, with which material costs in height occur of  2.51. For that one can do handicrafts then to be sure theoretically 10 connectors, for it gives the components only in the 50er bag.

Pin
Pin name Description
1 NC
2 J1850 bus +
3 NC
4 Vehicle mass
5 Signal mass
6 CAN High (J-2284)
7 ISO 9141-2 K exit
8 NC
9 NC
10 J1850 bus
11
12
13
14 CAN Low (J-2284)
15 ISO 9141-2 L exit
16 Battery-tension + 12V

 

Is my vehicle equipped with OBD-2?

On Board Diagnostics, OBD-II, is required on all automobiles and light trucks in the United States from 1996 onward. OBD-II is a set of specifications for monitoring and reporting on engine performance in modern automobiles. Diesel (compression ignition) vehicles were not required to support OBD until 2004. Some pre-2001 petrol vehicles and pre-2004 diesel vehicles have a 16-pin connectors but they may not be OBD-II or EOBD compliant.

Where is an OBD-2 connector?

Locating your OBD connector can be a difficult task as vehicle manufacturers tend to hide away the socket. Usually OBD-2 connector is located on the driver’s side of the passenger compartment near the center console. Sometimes it’s located in the driver’s foot well, under the steering wheel, behind panels in the dashboard fascia and the central area between the driver’s seat and the passenger seat. Some connectors have been located behind ashtrays, under the passenger seat and even over by the passengers door.

OBD-2 connector must have pins 4, 5 for ground connections and pin 16 for 12 volt power supply from the vehicle battery. 

What is OBD DTC?

Prior to OBD, auto manufacturers did not standardize DTC’s (diagnostic trouble code). OBD-I begins standardized DTC’s OBD-II adds specific tests to determine the vehicles emission performance OBD-III adds more features, and is in the regulatory development phase.

If the vehicle’s onboard diagnostic system detects a malfunction, a DTC corresponding to the malfunction is stored in the vehicle’s computer, as well as realtime data from the sensors connected to the on-board computer. In addition, the OBD-II interface provides a means to clear the DTC’s once maintenance has been completed. A service technician can retrieve the DTC, using a scan tool, and take appropriate action to resolve the malfunction. Prior to the advent of digital powertrain control modules, which is the technical enabler for the OBD feature, repairing a vehicle relied solely upon the technicians skill and service literature from the auto manufacturer.

OBD-II connector specifications

The OBD-II specification provides for a standartized hardware interface – the female 16-pin (2×8) J1962 connector. Unlike the OBD-I connector, which was found under the hood of the vehicle, theOBD-II connector is located on the driver’s side of the passenger compartment near the center console.

Pin Signal Description
2 J1850 Bus+
4 CGND GND
5 SGND GND
6 CAN High J-2284
7 ISO 9141-2 K-LINE Tx/Rx
10 J1850 Bus-
14 CAN Low J-2284
15 ISO 9141-2 L-LINE Tx/Rx
16 +12v Battery power

There are five protocols in use with the OBD-II interface, and often it is possible to make an educated guess about the protocol in use based on which pins are present on the J1962 connector:

OBD-2 protocols

SAE J1850 PWM (41.6 kbaud, standard of the Ford Motor Company)
pin 2: Bus-
pin 10: Bus+
High voltage is +5V
Message length is restricted to 12 bytes, including CRC Employs a multi-master arbitration scheme called Carrier Sense Multiple Access with Non-Destructive Arbitration (CSMA/NDA)

SAE J1850 VPW (Variable Pulse Width) (10.4/41.6 kbaud, standard of General Motors) 
pin 2: Bus+
Bus idles low
High voltage is +7V
Decision point is +3.5V
Message length is restricted to 12 bytes, including CRC Employs CSMA/NDA

ISO 9141-2. This protocol has a data rate of 10.4 kbaud, and is similar to RS-232. 
ISO 9141-2 is primarily used in Chrysler, European, and Asian vehicles. 
pin 7: K-line
pin 15: L-line (optional)
UART signaling (though not RS-232 voltage levels)
K-line idles high
High voltage is Vbatt
Message length is restricted to 12 bytes, including CRC

ISO 14230 KWP2000 (Keyword Protocol 2000) used by most European and Asian manufacturers. 
Alfa Romeo, Audi, BMW, Citroen, Fiat, Honda, Hyundai, Jaguar (X300, XK), Jeep since 2004, Kia, Land Rover, Mazda, Mercedes, Mitsubishi, Nissan, Peugeot, Renault, Saab, Skoda, Subaru, Toyota, Vauxhall, Volkswagen (VW) since 2001, Volvo to 2004
pin 7: K-line
pin 15: L-line (optional)
Physical layer identical to ISO 9141-2
Data rate 1.2 to 10.4 kbaud
Message may contain up to 255 bytes in the data field

ISO 15765 CAN (250kbit/sec or 500kbit/sec) 
pin 6: CAN High
pin 14: CAN Low
Used in most modern vehicles.

Note that pins 4 (battery ground) and 16 (battery positive) are present in all configurations. Also, ISO 9141 and ISO 14230 use the same pinout, thus you cannot distinguish between the two simply by examining the connector.

OBD-II CAN bus

CAN bus used in Ford, Mazda, Volvo and most other cars since 2004. The CAN protocol is a popular standard outside of the automotive industry and is making significant in-roads into the OBD-II market share. By 2008, all vehicles sold in the US will be required to implement the CAN bus, thus eliminating the ambiguity of the existing five signalling protocols.

The CAN bus is simply a pair of wires, often twisted around each other, running around the vehicle and terminated at either end of the two-wire network with resistors of 120 Ohms. The only components connected to the CAN bus are the electronic control units (nodes). Other components, such as sensors, motors, light bulbs, switches, etc. are wired only to the electronic control units. Some vehicles have a CAN bus system along side the ISO/KWP2000 system. A vehicle which uses CAN bus for on-board diagnostics can only respond to an OBD-II request from a tester which uses CAN bus. From model year 2008 vehicle manufacturers must use the OBD protocol specified in ISO 15765, also known as Diagnostics On CAN.

Two wires of CAN bus, CAN-H and CAN-L, will have the same voltage when idle (about 2.5V), or a voltage difference of 2V when a signal is placed on the CAN bus. When a signal is placed on the CAN bus the CAN-H line is at a higher voltage than the CAN-L line. Each electronic control unit have its own CAN identity code, like an address (may respond to several CAN id codes). If an electronic control unit is to communicate to another it will need to know the CAN identity code of the recipient.

A simple check to see if the CAN bus is in use in a vehicle, and accessible via the OBD socket, is to connect a resistance meter across pin 6 and pin 14. Due to the combined resistance of the two termination resistors at 120 Ohms each the overall resistance should be read as 60 Ohms.

OBD-II provides access to numerous data from the ECU and offers a valuable source of information when troubleshooting problems inside a vehicle. The SAE J1979 standard defines a method for requesting various diagnostic data and a list of standard parameters that might be available from the ECU. The various parameters that are available are addressed by parameter identification numbers or PIDs which are defined in J1979. For a list of basic PIDs, their definitions, and the formula to convert raw OBD-II output to meaningful diagnostic units, see OBD-II PIDs.

Here are some schemes of OBD-II diagnostic cables


CAN-bus was designed for automotive applications but is also used in other areas. The protocol was officially released in 1986 by the Society of Automotive Engineers (SAE). CAN become become most available OBD standard for vehicles produced after 2007 yrs.

A modern automobile may have up to 50 electronic control units (ECU) for various subsystems. Usually the biggest processor is the engine control unit, others are used for transmission, airbags, antilock braking, cruise control, audio systems, windows, doors, mirror adjustment, etc. Some of these form independent subsystems, but communications among others are essential. The CAN standard was devised to fill this need. CAN is a multi-master broadcast serial bus standard for connecting electronic control units (ECUs).

The CAN bus may be used in vehicles to connect engine control unit and transmission, or (on a different bus) to connect the door locks, climate control, seat control, etc. Today the CAN bus is also used as a fieldbus in general automation environments.

The devices that are connected by a CAN network are typically sensors, actuators and control devices. A CAN message never reaches these devices directly, but instead a host-processor and a CAN Controller is needed between these devices and the bus.

The CAN data link layer protocol is standardized in ISO 11898-1 (2003). 

There are several CAN physical layer standards:
ISO 11898-1: CAN Data Link Layer and Physical Signalling
ISO 11898-2: CAN High-Speed Medium Access Unit (uses a two-wire balanced signaling scheme. It is the most used physical layer in car powertrain applications and industrial control networks)
ISO 11898-3: CAN Low-Speed, Fault-Tolerant, Medium-Dependent Interface
ISO 11898-4: CAN Time-Triggered Communication (standard defines the time-triggered communication on CAN (TTCAN). It is based on the CAN data link layer protocol providing a system clock for the scheduling of messages)
ISO 11898-5: CAN High-Speed Medium Access Unit with Low-Power Mode
ISO 11992-1: CAN fault-tolerant for truck/trailer communication
ISO 11783-2: 250 kbit/s, Agricultural Standard – uses four unshielded twisted wires; two for CAN and two for terminating bias circuit (TBC) power and ground. This bus is used on agricultural tractors. This bus is intended to provide interconnectivity with any implementation adhering to the standard.
SAE J1939-11: 250 kbit/s, Shielded Twisted Pair (STP) – standard uses a two-wire twisted pair, -11 has a shield around the pair while -15 does not. SAE 1939 is widely used in agricultural & construction equipment
SAE J1939-15: 250 kbit/s, UnShielded Twisted Pair (UTP) (reduced layer)
SAE J2411: Single-wire CAN (SWC)

CAN-bus usually accessed via 6 and 14 pin of OBD II connector

OBD 2 CAN pinout

 

 

Pin Signal Description
4 CGND GND
5 SGND GND
6 CAN High
14 CAN Low
16 +12v Battery power

 


 

 

Here are some schemes of OBD-II diagnostic cables